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Fig. 1. Rising smoke flows around a complex obstacle, creating an interesting pattern of secondary plumes in this 64 × 64 × 32 simulation (left). Our method
(right) constrains a 512 × 512 × 256 simulation to match the large-scale flow of the low-resolution input, so that we retain both the overall behavior of the
original smoke and the turbulent fine-scale dynamics that arise from high-resolution fluid simulation.

We propose a simple and efficient method for guiding an Eulerian smoke
simulation to match the behavior of a specified velocity field, such as a low-
resolution animation of the same scene, while preserving the rich, turbulent
details arising in the simulated fluid. Our method works by simply combining
the high-frequency component of the simulated fluid velocity with the low-
frequency component of the input guiding field. We show how to eliminate
the grid-aligned artifacts that appear in naive guiding approaches, and
provide a frequency-domain analysis that motivates the use of ideal low-
pass and high-pass filters to prevent artificial dissipation of small-scale
details. We demonstrate our method on many scenes including those with
static and moving obstacles, and show that it produces high-quality results
with very little computational overhead.
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1 INTRODUCTION
Realistic animation of smoke is a critical part of many visual effects
applications, but still presents computational and artistic challenges
due to the chaotic nature of fluid dynamics. High-resolution smoke
simulation is expensive and requires a significant amount of com-
putation time and memory. As such, artists prefer to work with
low-resolution simulations when first designing a scene. Once the
desired large-scale behavior is obtained, one would like to then
scale up the resolution of the simulation for the final high-quality
result, retaining the overall flow while better resolving small-scale
turbulent details. However, as shown in Figure 2, increasing the
resolution of the simulation affects the amount of artificial dissipa-
tion and other numerical effects, resulting in noticeably different
behavior even at the large scales. Therefore, additional trials at high
resolution may be needed to preserve the desired artistic intent.

To overcome this problem, we desire a method to guide a smoke
simulation to follow a large-scale flow specified by the user, such
as the result of a previously computed lower-resolution simulation.
Many such techniques have been proposed in previous work [Huang
and Keyser 2013; Huang et al. 2011; Inglis et al. 2017; Nielsen and
Christensen 2010; Nielsen et al. 2009], which apply guiding forces
or constraints on the simulated velocity field to stay as close as
possible to the guide velocity field. However, all of these techniques
add a significant overhead to the already high computational cost
of unguided high-resolution simulation.

We present a simple technique for fluid guiding based on projec-
tion in the frequency domain. The key idea of our method is that
the low-frequency component of a velocity field captures its overall
large-scale behavior, so guiding is most naturally expressed as a
hard constraint on the low frequencies alone. Therefore, our method
proceeds as follows. At each time step, we extract the low-frequency

ACM Trans. Graph., Vol. 39, No. 6, Article 172. Publication date: December 2020.



172:2 • Forootaninia and Narain

64 × 64 × 32 192 × 192 × 96 unguided 192 × 192 × 96 guided

Fig. 2. The same scene as Fig. 1 but with 3× upscaling. Without guiding, a higher-resolution simulation exhibits substantially different behavior, even with a
smaller upscaling factor.

component of the simulation using an ideal low-pass filter in the
frequency domain, and constrain it to match the corresponding
frequencies of the guiding velocity field. The high-frequency com-
ponent of the simulated velocity field is unaffected by this process.
In this way, the large-scale behavior of the result exactly matches
that of the guiding field, while the detailed features of flow aris-
ing from high-resolution simulation are perfectly preserved. The
amount of guiding can be controlled by changing the filtering cutoff.

Our method is straightforward and easy to implement on top of
an existing grid-based fluid solver. It adds very little computational
overhead, requiring only an FFT and IFFT at each time step. We
show results on various smoke scenes including thosewith static and
moving obstacles. In all cases, our method successfully preserves the
large-scale motion of the guiding flow while adding rich, dynamic
flow details in the small scales. Visual comparisons with unguided
high-resolution simulations indicate that our method preserves the
qualitative appearance of small-scale flow features to a better extent
than the method of Inglis et al. [2017].

2 RELATED WORK
Fluid simulation is a well developed field in computer animation,
and we refer readers to Bridson [2015] and Koschier et al. [2019]
for a comprehensive discussion of grid-based and particle-based
methods respectively. In this section, we review the most closely
related work in controlling and guiding fluids to achieve desired
artistic effects.
There are two main approaches for modifying a full-resolution

fluid simulation to produce a desired behaviour, depending on how
this behavior is specified. In fluid control methods, only a target
shape or smoke distribution is given, and the fluid velocities must
be controlled to drive the fluid towards the target state over time. In
fluid guiding methods, the target velocity field itself is specified over
the entire domain at all time instants, and the fluid is constrained
to follow the given motion while retaining its physically plausible

small-scale flow details. Another alternative to fluid guiding is of-
fered by detail synthesis techniques, which forgo high-resolution
fluid simulation in favor of non-physical approaches such as proce-
dural noise fields and generative neural networks.

2.1 Fluid control
Much work on fluid control has focused on driving simulated smoke
or liquids to form specified shapes at chosen keyframes. Treuille et al.
[2003] introduced a model to control smoke simulation by defin-
ing an objective function which measures how well the simulation
matches the specified keyframes. McNamara et al. [2004] introduced
an efficient method for this problem using gradient-based nonlinear
optimization. Fattal and Lischinski [2004] instead add control forces
proportional to the gradient of the target density distribution. Shi
and Yu proposed methods of controlling the dynamics of smoke [Shi
and Yu 2005a] and liquids [Shi and Yu 2005b] to follow rapidly chang-
ing targets. Barbič and Popović [2008] introduced a general method
for controlling physics-based simulations using gentle forces, which
can be applied to low-dimensional model-reduced fluids. Pan and
Manocha [2017] provided a method for computing locally optimal
control forces using an ADMM optimization.
To animate “sloppy” characters made of liquid, Rasmussen et al.

[2004] use control particles defined on a user-specified surface to
apply variable amounts of control on the fluid motion. Raveendran
et al. [2012] similarly define a set of control meshes to track a desired
shape, where the mesh velocities act as boundary conditions during
the projection step and blendedwith the uncontrolled fluid velocities
to control over the fluid.
Instead of forcing the fluid to create user-specified shapes, one

may instead seek to make local changes to the result of a traditional
fluid simulation while maintaining physically plausible behavior.
Pan et al. [2013] present a method for locally editing liquid simula-
tions via intuitive controls like sketching and dragging. Manteaux
et al. [2016] allow liquid editing by automatically detecting space-
time features like splashes so that the user can copy and paste them.
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2.2 Fluid guiding
In fluid guiding, we wish to enhance an existing fluid motion by
preserving its large-scale features, while at the same time generating
new small-scale flow details. Guiding methods do so by constraining
a high-resolution simulation to follow the specified fluid flow, while
allowing secondary turbulent dynamics to arise naturally.
Thürey et al. [2006] proposed a detail-preserving fluid control

method by creating artificial control particles that exert an attrac-
tion force on the fluid particles and push them toward the desired
path. To ensure that the fluid velocity matches that of the control
particles without disturbing the natural small-scale fluid motion,
they separate the overall fluid motion from fine-scale detail using a
low-pass filter on the velocity field.
Nielsen et al. [2009] formulated guiding as a constrained min-

imization problem in which the high-resolution velocity field is
required to be as close as possible to an upsampled version of
the input low-resolution field. In subsequent work, Nielsen and
Christensen [2010] separated the low frequencies from high fre-
quencies, making the mathematical formulation more efficient for
time-dependent guiding of smoke simulation. Huang and colleagues
proposed sampling-based techniques for fluid guiding [Huang and
Keyser 2013; Huang et al. 2011], in which they match sampled data
from the guiding flow at various positions and scales. This gives
users the ability to identify key portions of the simulation to main-
tain. Inglis et al. [2017] proposed an optimization method for fluid
simulation, in which fluid guiding is expressed via a soft constraint
on the simulated velocity and the minimization is carried out via a
primal-dual algorithm.
For guiding of liquid flow, Nielsen and Bridson [2011] construct

a guide shape from a coarse simulation so that the high-resolution
simulation can be run on a much shallower volume. Stomakhin
and Selle [2017] introduced a similar method for particle-based
simulations such as FLIP and SPH.

2.3 Detail Synthesis for Fluids
Many techniques have been proposed to add plausible fine-scale
features directly on top of an input low-resolution fluid without
additional numerical simulation.We refer to these as detail synthesis
techniques.

One popular class of techniques is that of turbulence models, such
as the popular wavelet turbulence method [Kim et al. 2008], which
augment the coarse flow with synthetic details through procedural
noise or texture synthesis. We refer the reader to Thuerey et al.
[2013] for a detailed survey, and note the more recent method of
Sato et al. [2018] that transfers the style of one turbulent fluid to
another. Recently, there has also been a growing trend of CNN-based
techniques for super-resolving smoke simulations by synthesizing
a high-resolution density field [Werhahn et al. 2019; Xie et al. 2018]
or velocity field [Bai et al. 2019].

The advantage of detail synthesis techniques is that they avoid the
computational cost of performing high-resolution fluid simulation.
However, with the exception of the recent work of Bai et al. [2019],
they are limited in their ability to reproduce the rich secondary dy-
namics of turbulent flows, since the added details do not necessarily
obey the Navier-Stokes equations. In this work, we focus on fluid

guiding, and seek to remain as close to the physics of the fluid as
possible.

3 SMOKE GUIDING
In this section, we will define the fluid guiding problem in more
detail, and introduce a generic framework throughwhich techniques
for this problem may be viewed. We assume that an existing fluid
simulator is available, which can advance the velocity field u over
one time step. In the fluid guiding problem, we are further given a
user-specified, time-varying guide velocity field ug. Our goal is to
modify the velocity field produced by the simulator, so that it follows
the overall motion of ug in the large scales. Simultaneously, the
result should not change the small scales of the simulated velocity,
so that we retain all the turbulent details of fluid motion produced
by the simulation. In summary, at every time step, we take the new
velocity field computed by the fluid simulator, which we denote us,
and modify it according to the guiding field ug to get the guided
velocity u. The guided velocity is then used as the input for the fluid
simulator at the next time step.
At this stage, the aim of fluid guiding is still defined only infor-

mally. We may formalize the problem by defining the large-scale
motion of the fluid as the result of a low-pass filter L(u) applied
to the velocity field, and the small-scale details as the remaining
high-frequency component H (u) = u − L(u). For example, Thürey
et al. [2006] define L via a blur kernel centered on control particles in
an SPH simulation; while most previous work on guiding grid-based
fluids [Inglis et al. 2017; Nielsen and Christensen 2010; Nielsen et al.
2009] uses convolution with a Gaussian kernel, L(u) = G ∗ u.

At this point, it is tempting to define the task of fluid guiding as
finding a velocity field whose low-frequency component matches
that of the guiding flow,

L(u) = L(ug). (1)
Such a constraint was considered by Nielsen et al. [2009], who
pointed out that it would be numerically very badly behaved for
most low-pass filters. In fact, for a Gaussian filter, it can be shown by
a frequency-domain argument that in the continuous case, (1) has a
unique solution u = ug, leaving no room for u to retain small-scale
details from the simulation.1 Nielsen et al. [2009] and Inglis et al.
[2017] have also considered a simple guiding method

u = H (us) + L(ug), (2)
where one simply combines the low-frequency component of the
guiding flow with the high-frequency details from the simulation.
However, both sets of authors have shown that this “detail-preserving
blend”, inspired by the particle-based guiding method of Thürey
et al. [2006], produces severe artifacts in a grid-based setting. There-
fore, a series of works [Inglis et al. 2017; Nielsen and Christensen
2010; Nielsen et al. 2009] have proposed more sophisticated tech-
niques where the guiding operation is expressed as a large-scale
optimization problem.

In the following section, we analyze detail-preserving blending in
the frequency domain and show that existing guidingmethods based
1In the frequency domain, convolutionG ∗ u becomes a pointwise multiplication Ĝ û
at each frequency, so (1) becomes Ĝ û = Ĝ ûg . Since the Fourier transform Ĝ is also a
Gaussian and therefore nonzero everywhere, we can divide it out to get û = ûg .
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on Gaussian filters result in artificial dissipation of flow features.
Then we show that by simply changing the low-pass filter L, one
can avoid this drawback, and in fact obtain a method that exactly
satisfies (1).

3.1 Frequency-domain analysis of fluid guiding
The low-frequency and high-frequency components of the velocity
field as described above can be analyzed more easily in the fre-
quency domain, since the convolution becomes a simple pointwise
multiplication. We adopt the convention that Fourier transform of
any quantity x is denoted x̂ .
For now, let us consider the choice L(u) = G ∗ u. Then the low-

frequency component of the velocity field is obtained in the fre-
quency domain as L̂û = Ĝû. Similarly, the high-frequency compo-
nent is Ĥ û = (1 − Ĝ)û.

The guiding field ug is typically very smooth, since it arises from
a smooth user input or from a low-resolution simulation with sig-
nificant numerical dissipation. After detail-preserving blending, we
obtain

û = Ĝûg + (1 − Ĝ)us.

The above equation shows that all frequency modes of the simulated
velocity field are reduced by a factor of 1 − Ĝ every time step. Since
Ĝ is itself a Gaussian, and is always positive, this indicates that
detail-preserving blending introduces artificial dissipation, gradu-
ally damping out the flow features of the simulated fluid (although
unlike viscosity, the rate of damping is lower for higher frequencies).
In fact, such a guiding method is also time step dependent, since if
the time step is reduced, more guiding operations will be applied and
the flow will dissipate faster. A similar frequency-domain analysis
can be carried out for previous methods [Inglis et al. 2017; Nielsen
and Christensen 2010; Nielsen et al. 2009] if the guiding parameters
are spatially uniform. We show this analysis in Appendix A.
The dissipation that results from the Gaussian filter is due to

the fact that it is not idempotent: Ĝ2 , Ĝ, and consequently (1 −
Ĝ)2 , (1 − Ĝ). As a result, multiple applications of 1 − Ĝ keep
attenuating the features of the fluid velocity. To avoid this dissipation
and preserve all the desired details of the simulated velocity field,
it is necessary for the guiding process to be idempotent: that is,
applying guiding multiple times on the simulated flow should not
change the result beyond the initial guiding. This is easy to achieve
in the frequency domain: the coefficients of the filters L̂ and Ĥ
must be 0 or 1. Therefore, we choose them to be ideal low-pass and
high-pass filters respectively,

L̂(ν ) =
{
1 if ∥ν ∥ < νcutoff
0 otherwise,

(3)

Ĥ (ν ) =
{
0 if ∥ν ∥ < νcutoff
1 otherwise.

(4)

Here the parameter νcutoff is the cut-off frequency of the filters. As
a result, û = L̂ûg + Ĥ ûs is the velocity field obtained by replacing
the all low-frequency (i.e. below νcutoff ) coefficients of us with the
corresponding coefficients of ug. The frequency cutoff affects the
amount of guiding. As seen in Figures 8 and 9, the higher the cutoff,

Fig. 3. Our method takes a guide velocity field as an input and the current
velocity from the fluid simulation, and superimposes the low frequencies
of the guide velocity with the high frequencies of the current velocity. This
yields the new guided velocity field, which will be used as the current
velocity for the next frame of the simulation.

the more guiding we obtain, and the more the overall flow will
resemble the guiding velocity field.
We can also verify that the guiding operation is idempotent. If

we denote k iterations of guiding via ûk = L̂ûg + Ĥ ûk−1, then

ûk = L̂ûg + Ĥ ûk−1

= L̂ûg + Ĥ (L̂ûg + Ĥ ûk−2)

= L̂ûg + Ĥ ûk−2

...

= L̂ûg + Ĥ û0

(5)

because L̂Ĥ = 0 and Ĥ2 = Ĥ . As a result no matter how many
guiding operations are applied, we always can preserve the same
amount of details that we could preserve after the first time. Finally,
the result of guiding exactly satisfies the guiding constraint (1), since
L̂û = L̂(L̂ûg + Ĥ ûs) = L̂ûg.

3.2 Implementation of fluid guiding with ideal filters
We apply our guiding procedure to the simulated velocity by taking
the Fourier transform of both guiding and simulated velocity fields.
Since these velocity fields are not periodic but rather are subject
to boundary conditions at the grid boundaries, one has to make
a careful choice of how to compute the Fourier modes. Following
Long and Reinhard [2009], we assume no-through, free-slip wall
boundary conditions, and use the discrete cosine/sine transforms
(DCT/DST) to obtain Fourier modes that respect the boundaries.
These transforms are applied independently to each component
of the velocity field and independently in each direction, with the
appropriate type of DCT/DST chosen to account for the staggered
nature of the MAC grid and the even/odd symmetry imposed by
the boundary conditions.
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Algorithm 1 Fluid simulation with frequency-domain guiding
Run fluid simulator on u without final pressure projection
to get us

Perform DCT/DST to get ûs and ûg
Set û = L̂ûg + Ĥ ûs
Perform IDCT/IDST to get u
Perform pressure projection on u

For completeness, we explain these choices here. Consider the
x-component of the velocity field, ux . No-through boundary con-
ditions require ux = 0 at the left and right walls of the domain, so
ux should be treated as an odd function of x , and we use the DST-I
variant of the discrete sine transform along the x axis of the grid.
With free-slip boundaries, ux is most naturally viewed as an even
function ofy and z, and since the samples are offset by half a grid cell
in the MAC grid, a DCT-II transform is appropriate. Similarly for uy
and uz , we use DST-I in the direction aligned with the component
and DCT-II in the other two.

We have used this scheme for all our examples, although most of
them feature open boundary conditions instead; nevertheless, we
have not observed any significant artifacts from this choice. Cui et al.
[2018] have described compatible Fourier transforms for domains
having some or all boundaries open; we wish to adopt these in
future work.
Having transformed both velocity fields from guide and simula-

tion into the frequency domain, we can apply the ideal low- and
high-pass filters to ug and us. In fact, forming the guided velocity
field simply amounts to copying the values of all Fourier coeffi-
cients lower than the cutoff from the guiding velocity field to the
simulated velocity field. After applying the guiding, we take the in-
verse DCT/DST of the final coefficients with appropriate boundary
conditions to get the new guided velocities back.

A convenient property of the frequency domain is that for a rect-
angular domain, the divergence-free constraint on the velocity field
acts independently on each frequency mode [Long and Reinhard
2009; Stam 2002]. Since our guiding scheme simply transfers coeffi-
cients from selected modes in ug independently to corresponding
modes in us, it is naturally compatible with the divergence-free
constraint, in the sense that if both ug and us are divergence-free,
then the result of guiding u is automatically divergence-free as well.
In fact, guiding and pressure projection are interchangeable: pro-
jecting an arbitrary velocity field to be divergence-free and then
performing guiding gives the same result as guiding the original
velocity field and then projecting the result.

This is no longer true if the fluid domain is not rectangular. In
particular, in the presence of obstacles, the fluid velocity field is no
longer defined everywhere on the simulation grid. We extend the do-
main of the velocity field by filling all obstacle cells with the obstacle
velocity, and perform guiding on the full grid without modification
as if there were no obstacles. Alternatively, one could extrapolate
the fluid velocity into obstacles, although we have not tried this yet.
In either case, however, since the guiding operation is not aware of
the obstacles, the guided fluid may no longer respect the obstacle
boundaries and thus incompressibility may not be guaranteed. In
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grid-based particle-based

Fig. 4. Both Gausssian blending (top) and our ideal frequency-domain guid-
ing (bottom) exacerbate axis-aligned discretization artifacts in grid-based
density advection (left). Tracking densities by advecting tracer particles
(right) eliminates theses artifacts.

this case, we would require an additional pressure solve to recover
a divergence-free velocity field on the fluid domain. This additional
cost can be avoided by observing that pressure projection is invari-
ably the last step in the fluid simulator, and we know that guiding
and pressure projection are interchangeable in the obstacle-free case.
So we simply move the pressure projection after the guiding step:
that is, we run one timestep of the fluid simulator without the final
pressure projection, perform guiding, and then apply pressure pro-
jection afterwards. This yields a valid divergence-free velocity field
for scenes with obstacles, while causing no change to the results in
the absence of obstacles. Furthermore, it can be seen that our obsta-
cle handling approach does not incur any additional computational
overhead.

The steps of our algorithm are summarized in Algorithm 1. Figure
3 illustrates the steps above as well.

3.3 Grid Artifacts
Our initial experiments with fluid guiding encountered an unex-
pected problem: purely grid-based smoke simulation with guiding
often results in streak-like artifacts aligned with the grid axes (Fig. 4).
These are especially noticeable in Gaussian detail-preserving blend-
ing, in which context theywere referred to as “frosted glass” artifacts
by Inglis et al. [2017]; unfortunately, they can also be observed in
our ideal guiding scheme. After much investigation, we found that
these were discretization artifacts caused by higher-order grid-based
advection schemes. Switching from MacCormack advection [Selle
et al. 2008] to first-order semi-Lagrangian advection reduces the
artifacts, and further reverting the spatial interpolation to linear
instead of monotone cubic eliminates them. We hypothesize that the
reason these artifacts are exacerbated by guiding is that the guiding
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low-res high-res unguided high-res guided primal-dual tempoGAN Gaussian blending upsampled

Fig. 5. A plume of smoke is emitted from a cylindrical source, becoming turbulent as it rises. From left, we show results from a low-resolution simulation,
a high-resolution unguided simulation, our guiding method, the primal-dual guiding method [Inglis et al. 2017], tempoGAN [Xie et al. 2018], Gaussian
detail-preserving blending, and high-res density advection using upsampled velocities. All higher-resolution results are 3×, except tempoGAN which performs
4× super-resolution.

process forces many regions of the domain to near-zero velocities,
which is a difficult case for higher-order semi-Lagrangian advection.
Unfortunately, with low-order advection on grids, the result is too
diffusive to be useful.
Instead, we track density using particles: at each time step, we

seed particles at smoke sources and advect them passively using the
current velocity field, then accumulate them onto a grid to obtain
the smoke density that is used for buoyancy forces and rendering. In
the seeding step, we add new particles to each grid cell proportional
to the change in density due to the smoke source, up to a maximum
of 33 particles per grid cell. Particles are advected with RK4 time
integration and trilinear spatial interpolation on the velocity grid.
The smoke density on the grid is computed by accumulating particle
counts with linear interpolation weights. We do not make any effort
to avoid particle clumping.

We use this scheme for all of our results other than the left column
of Fig.4. For visualization, we found it expedient to render the grid
density rather than the particles themselves, although this gives
some of the low-resolution results a voxelized appearance. All other
aspects of the fluid simulator are unchanged, including the velocity
self-advection step which still uses MacCormack advection on a
MAC grid like before. One could certainly go further and switch to
a particle-in-cell scheme like FLIP [Brackbill and Ruppel 1986; Zhu
and Bridson 2005] or APIC [Jiang et al. 2015] for velocity advection
as well, but we chose to remain as close as possible to a purely
grid-based smoke solver.

4 RESULTS
We have implemented our method in the Mantaflow fluid simulation
code [Thuerey and Pfaff 2016]. We use the second-order advection-
reflection method [Narain et al. 2019; Zehnder et al. 2018] for all
examples except those in Figure 5 which have been used for com-
parisons. In the latter, we compare our method with Inglis et al.
[2017], so we use the traditional advection-projection method to
be consistent with their results. For all our guided simulations, we
choose νcutoff = 1/4 unless stated otherwise. These cutoff values are

normalized to the grid size, that is, νcutoff = 1/k means that guiding
is imposed on modes with a half-period of k low-resolution grid
cells or more.

We measured the performance of our method on a PC with a six-
core 3.50GHz Intel Xeon CPU. The dimensions of the low-resolution
input and the high-resolution simulation along with computation
time for all our results are given in Table 1.

Rising plume. As shown in Figure 5, we simulated a plume of
smoke from a cylindrical source rising due to buoyancy. Even in this
simple scene, the low-resolution and high-resolution simulations
diverge significantly due to the turbulent vortices emerging as the
plume rises. Our method, applied using the low-resolution result as
the guiding field, matches the overall shape of the plume from the
low-resolution input, but preserves the qualitative appearance of
turbulent vortices seen in the unguided high-resolution simulation.

We also ran the primal-dual guiding method of Inglis et al. [2017]
withw = 1 and β = 4 on the same example.We found that it matches
the overall shape of the guiding input very well, but the appearance
of the resulting flow differs qualitatively from the reference high-
resolution simulation: it exhibits stronger small-scale details, such
as near the base of the plume, and weaker mid-scale features.
To compare with the tempoGAN super-resolution model [Xie

et al. 2018], we applied their method with our low-resolution smoke
densities and velocities as input. In the resulting animation, the
smoke distribution from the original simulation has been made
sharper, but it is missing the small-scale features and vortices one
expects to see from a high-resolution simulation.
We also compared our results with Gaussian detail-preserving

blending as discussed in Section 3.1. Although with this approach
the coarse shape of the plume is well preserved, the fine-scale flow
details are weaker than with ideal guiding and primal-dual guiding
due to the additional dissipation caused by blending. Finally, we
show the result of simply upsampling the guiding velocity and
performing high-resolution density advection. As expected, the
smoke follows the guiding velocity with a sharp appearance, but no
details get generated due to the lack of high-frequency dynamics.
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low-res high-res unguided high-res guided

Fig. 6. Heavy smoke is poured on top of a sphere.

low-res high-res unguided high-res guided

Fig. 7. A rising plume is interrupted by a moving cylinder.

Static obstacles. In Figure 6, we pour heavy smoke on top of a
solid obstacle. The difference in resolutions changes the shape that
the smoke forms around the sphere; the low-resolution simulation
produces a noticeable vortex ring whereas in the high-resolution
simulation the ring quickly breaks apart due to turbulence. By ap-
plying our guiding method, we can maintain the shape of the vortex
ring while preserving the detailed flow appearance of the high-
resolution simulation.

Guiding can make a more significant difference when the smoke
interacts with complex objects having detailed geometry, since dif-
ferences in obstacle discretization and boundary interactions can
change the dynamics of the fluid dramatically. To illustrate this, we
run our guiding method with an obstacle with complex topology
and multiple holes, shown with 3× increased resolution in Figure 2
and 8× increased resolution in Figure 1. At low resolution, much
of the smoke is blocked by the obstacle while coherent secondary
plumes emerge from its holes; at high resolution the smoke moves
easily around it resulting in a turbulent flow. Our guided result
preserves the coherent behavior of the low-resolution simulation.

Moving obstacle. To demonstrate our method in the presence of
a moving obstacle, we simulated a scenario in which a cylindrical
obstacle is moving left to right sinusoidally above a source of smoke
(Figure 7). As the smoke rises, its vertical motion is disrupted when
the obstacle passes through it. The guided simulation retains the
small plume escaping vertically above the cylinder. Simultaneously,
it exhibits turbulent flow qualitatively similar to that of the high-res
simulation in the neighbourhood of the obstacle.

low-res high-res unguided

νcutoff = 1/2 νcutoff = 1/4 νcutoff = 1/8

Fig. 8. A jet of buoyant smoke is emitted horizontally from a source.

νcutoff = 1/3 νcutoff = 1/6 νcutoff = 1/9 νcutoff = 1/12

β = 2 β = 4 β = 6 β = 8

Fig. 9. Comparison of our guiding method (top) to primal-dual guiding
[Inglis et al. 2017] withW = 1 (bottom). We get visually similar results when
choosing parameters νcutoff = 2

3β .

Buoyant jet. We use this scenario to show the effect of different
choices of the filters’ frequency cutoff νcutoff . We ran a simulation
of an initially horizontal jet of smoke rising under buoyancy, shown
in Figure 8. Guided simulations with different choices of cutoff are
shown. The strength of the guiding lessens as the cutoff frequency
gets smaller, since more frequency modes are unconstrained.

Comparison with primal-dual fluid guiding. For another compar-
ison with the method of Inglis et al. [2017], we replicated their
example of a 2D smoke simulation guided by a constant circular
velocity field. The results are shown in Figure 9 for both our method
with different values of νcutoff and the primal-dual method with
different values of their parameter β . We have experimentally ob-
served that choosing νcutoff = 2/(3β) produces fairly similar results
between the two methods. Our method achieves qualitatively simi-
lar results to the primal-dual method, while our computational cost
is an order of magnitude smaller, as shown in Table 2. However, the
primal-dual method provides two parameters for guiding,W which
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low-res high-res unguided high-res guided

Fig. 10. Guiding using mismatched scenes for the low-res input and high-
res simulation. Passive tracer particles are added to visualize the flow in
smoke-free regions.

defines the guiding weight and and β which controls the amount of
smoothing. In comparison, our frequency-domain method has only
one parameter, the frequency cutoff νcutoff . Our method also only
performs guiding globally across the entire fluid, while the primal-
dual method permits both the guiding weight and the smoothing
radius to vary across the domain. We discuss this limitation of our
method further in the following section.

Mismatch between input and simulation. In all the above experi-
ments, we have used the same scene setup for both the low-resolution
input and the guided simulation, so that the flows are roughly simi-
lar. We still cannot guarantee perfect alignment due to discrepancies
in the discretization of sources or obstacles, but we have not ob-
served any objectionable artifacts due to this. However, to explore
how guiding is affected by such differences, we show in Figure 10
an exaggerated example where the scenes are completely different,
with smoke sources on opposite sides of the scene. Even in this
case, the results appear largely plausible, with the smoke in the
guided simulation churning in place as though blown by an external
wind field. However, we also observe some extraneous motion of
tracers in quiescent regions. These likely originate from “ringing”
artifacts (related to the Gibbs phenomenon) caused by hard cutoffs
in frequency-domain filtering.

5 DISCUSSION
Performance. The proposed frequency-domain method of smoke

guiding is fast without sacrificing simulation quality. In Table 1
we show that the overhead of our method is very small compared
to the cost of high-resolution simulation, since it only requires a
Fourier transform and an inverse Fourier transform of the velocity
field. This cost is comparable to that of the advection routines, and
dominated by the cost of pressure projection. In particular, for the
plume example (Figure 5), the breakdown of computational cost
for the individual steps of the simulation was as follows: velocity
advection: 16%, particle advection: 8%, pressure projection: 64%,
guiding: 12%. Another aspect keeping our overhead low is that even
in the presence of obstacles, we do not require an additional pressure
solve.

Constrained dynamics interpretation. Guiding with ideal filters
can be viewed as a projection operation, through which the current
velocity field is projected onto the space of velocity fields whose
low-frequency component equals that of the guide velocity uд . This

is similar in spirit to the TRACKS method [Bergou et al. 2007],
which controls the dynamics of wrinkles and folds in thin shells
by imposing constraints on the equations of motion based on the
input guide shapes. In particular, as discussed in Section 3.1, we can
express our guiding formulation as a hard constraint on the fluid
motion,

L̂û = L̂ûд . (6)

Consequently, the steps of our guiding algorithm can be interpreted
as a projection method for time integration of a particular con-
strained dynamical system, namely a fluid subject to a conjunction
of the Navier-Stokes or Euler equations and this additional guiding
constraint.

Limitations. Ourmost significant limitation compared to previous
work is that our guiding operation necessarily acts globally over
the entire fluid domain. It is not possible at present to guide only
a selected local region of the fluid while permitting the rest of the
fluid to evolve in an unconstrained manner. For the same reason, the
guiding velocity field must be specified everywhere in the domain,
which is reasonable for the application of refining low-resolution
preview simulations, but may be an onerous requirement for artist-
designed guiding flow fields.

Closely related to the above limitation is the fact that our method
is not suited for guiding liquid simulations. For liquids, the fluid
domain is typically a small subset of the simulation grid and its
boundary varies significantly over time. Thus a Fourier-based tech-
nique cannot be applied in this context.
Since our core guiding operation is unaware of obstacles, we

apply it immediately before the pressure projection so that the final
velocity field still remains incompressible and respects obstacle
boundaries. However, in this case guiding and pressure projection
do not commute and we may no longer satisfy the ideal guiding
constraint (1). In principle, obstacles and irregular domains could
be handled more naturally using Laplacian eigenfunctions [De Witt
et al. 2012], which would give us Fourier-type modes that respect
obstacle boundaries upon which guiding could be performed.
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Fig. 11. Guiding coefficients of Nielsen et al. [2009] (top left), Nielsen and
Christensen [2010] (top right), and Inglis et al. [2017] (bottom left) as a
function of frequency ν . We take L to be a Gaussian filter L(ν ) = e−ν 2 , and
set α = 0.65, ϕ = 0.35, andW = 1 as suggested by the respective authors.

A FREQUENCY-DOMAIN ANALYSIS OF PREVIOUS
WORK

Here we apply the frequency-domain analysis of Section 3.1 to
the existing guiding methods of Inglis et al. [2017]; Nielsen and
Christensen [2010]; Nielsen et al. [2009].
Let us first consider the method of Nielsen et al. [2009] with

spatially uniform guiding (i.e. the guiding weight α is independent
of position). Translating their eq. (6) into our notation, their method
finds the stationary point of∭ (

α

2 ∥u − us∥2 − λ∇ · u + 1 − α

2 ∥L ∗ u − ug∥2
)
dV (7)

with respect to u and λ, where L is a low-pass filter kernel. This is
equivalent to solving

min
u

∭ (
α

2 ∥u − us∥2 +
1 − α

2 ∥L ∗ u − ug∥2
)
dV (8)

s.t. ∇ · u = 0. (9)

We will ignore the divergence-free constraint ∇ · u = 0, since it
turns out that when both ug and us are divergence-free, the optimal
u is automatically divergence-free.
Parseval’s theorem implies that

∭
∥u∥2 dV =

∭
∥û∥2 dV̂ , so

this is equivalent to minimizing∭ (
α

2 ∥û − ûs∥2 +
1 − α

2 ∥L̂û − ûg∥2
)
dV̂ . (10)

Since this function is separable over frequencies, we can indepen-
dently minimize

α

2 ∥û − ûs∥2 +
1 − α

2 ∥L̂û − ûg∥2 (11)

at each frequency mode. This gives the optimal solution

û =
α

α + (1 − α)Ĝ2 ûs +
(1 − α)Ĝ

α + (1 − α)Ĝ2 ûg. (12)

Thus, at each frequency mode, the guided velocity is a linear combi-
nation of the simulated velocity ûs and the guiding velocity ûg with
frequency-dependent coefficients.

The method of Nielsen and Christensen [2010] solves

min
u

∭ (
(1 − ϕ)∥L ∗ u − L ∗ us∥2 + ϕ∥L ∗ u − ug∥2

+ ∥u − L ∗ u − (us − L ∗ us))∥2
)
dV = 0, (13)

which by a similar argument yields

û =
(2 − ϕ)L̂2 − 2L̂ + 1

L̂2 + (1 − L̂)2
us +

ϕL̂

L̂2 + (1 − L̂)2
ûg (14)

for spatially uniform guiding.
Finally, Inglis et al. [2017] solve

min
u

∭ (
∥L(u − ug)∥2 + ∥W (u − us)∥2

)
dV , (15)

yielding

û =
W 2

(L̂2 +W 2)
ûs +

L̂2

L̂2 +W 2 ûg. (16)

The frequency-dependent coefficients for all three methods are
visualized in Fig. 11.
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