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I. TTC DERIVATIVES

In the TTC and UTTC models, τ is a solution to a quadratic
equation, aτ2 + 2bτ + c = 0, whose coefficients a, b, and c
depend on x and v. To compute the associated (U)TTC force,
we require its derivative ∂τ

∂x . Here, we compute this derivative
explicitly in terms of the derivatives of the coefficients. For
brevity, we will use the prime notation (·)′ to denote the
derivative with respect to x, ∂(·)∂x .

We know that

τ =
−b±

√
D

a
, (1)

where D = b2 − ac is the discriminant of the quadratic.
However, this form is inconvenient to differentiate directly. In-
stead, we apply implicit differentiation to the original quadratic
equation, yielding

a′τ2 + 2aττ ′ + 2b′τ + 2bτ ′ + c′ = 0. (2)

Therefore,

τ ′ = −a
′τ2 + 2b′τ + c′

2(aτ + b)
(3)

= ∓ 1

2
√
D
(a′τ2 + 2b′τ + c′), (4)

using the fact that τ = (−b±
√
D)/a.

For the standard TTC model, the coefficients of the
quadratic equation are

a = ‖v‖2, a′ = 0, (5)
b = x · v, b′ = v, (6)

c = ‖x‖2 − r2, c′ = 2x, (7)

and so the derivative of τ is simply

∂τ

∂x
= ∓ 1√

D
(x+ vτ) . (8)

For the isotropic model,

a = ‖v̂‖2 − ε2, a′ = 0, (9)
b = x · v̂ − rε, b′ = v̂, (10)

c = ‖x‖2 − r2, c′ = 2x, (11)

so again we have

∂τ̂

∂x
= ∓ 1√

D
(x+ v̂τ). (12)

II. CHOICE OF ROOT

As τ is defined by a quadratic equation aτ2 +2bτ + c = 0,
we generically have two choices of root. We will show that
in all cases, we only need to choose the root given by the
negative sign,

τ =
−b−

√
D

a
=

c

−b+
√
D
. (13)

At the initial condition t = 0, the agents must not be
intersecting, so the constant term c is positive. The product
of the roots is c/a, and so has the same sign as a. If a is
positive, either both roots are positive and we should take the
smaller one (using −

√
D/a), or both roots are negative and

the choice is immaterial as either one will be end up being
discarded. If a is negative, one root is positive and the other is
negative, so we should take the positive one (using −

√
D/a).

As a consequence, the ∓ signs in the expressions for ∂τ/∂x
in the previous section can be omitted, as they are always
positive for the roots of interest.

III. ENERGY-BASED ADVERSARIAL MODEL

In the adversarial model described in the main text, we
choose ṽ = v̂ − ε x

‖x‖ and prescribe the inter-agent interac-
tion using the standard TTC force fTTC(x, ṽ, r). Unlike the
standard TTC model and the isotropic model, this approach
does not have the property of being derived directly from an
interaction energy. If such a property is desired, one can define
an energy Uadv = f(τ(x, ṽ, r)) and derive the force via its
gradient. This yields an interaction model very similar, though
not identical, to the adversarial model discussed in the text.
For completeness, we give here the formula for this force,
fadv = −∂Uadv/∂x.

The time to collision τ̂ is now determined by

‖x+ ṽτ̂‖2 = r2, (14)

where ṽ = v̂ − ε x
‖x‖ . The coefficients of this equation are

a = ‖ṽ‖2, a′ = − 2ε

‖x‖

(
I− xxT

xTx

)
ṽ, (15)

b = x · ṽ, b′ = ṽ, (16)

c = ‖x‖2 −R2, c′ = 2x, (17)

and so
∂τ

∂x
=

1√
D

(
x+ ṽτ − ε

‖x‖

(
I− xxT

xTx

)
ṽτ2

)
, (18)

where D = b2 − ac = (x · ṽ)2 − ‖ṽ‖2(‖x‖2 −R2).



IV. PROOF OF LEMMA 3

We first restate the lemma:

Lemma 3. If two agents collide at a time t∗, and all forces
other than the TTC force f ij are bounded, there exists an
interval [t0, t

∗] in which the TTC force between the agents
performs an unbounded amount of negative work.

Proof: As s(t) approaches zero, the VO cone STTC

becomes approximately a half-space, and the time to collision
can be well approximated by τ(t) ≈ −s(t)/s′(t). Because
s(t) = 0 and s′(t) < 0 at t∗, there exists a time interval
[t0, t

∗] in which ṡ is bounded away from zero. In this interval,
τ(t) is finite and decreases to 0 at time t∗.

As the rate of work done by the TTC force is Ẇ = f ′(τ),
the total work done over the interval [t0, t∗] is its integral,

W =

∫ t∗

t0

f ′(τ(t)) dt.

Suppose we have the bounds τ ′∗ ≤ τ ′(t) < 0. Then, using the
fact that df(τ(t))/dt = f ′(τ(t))τ ′(t), we can show that the
integral is unbounded:

W =

∫ t∗

t0

df(τ(t))/dt

τ ′(t)
dt

≤ 1

τ ′∗
f(τ(t))

∣∣t=t∗
t=t0

= −∞

because f(τ(t∗)) = f(0) =∞.
If the nonpositivity assumption τ ′(t) < 0 is violated for

some values of t, we can simply ignore them in the integration
domain and apply the same argument to show that the reduced
integral is still unbounded. It is however essential that a lower
bound τ ′∗ ≤ τ ′(t) holds. Differentiating τ(t) = −s(t)/s′(t),
we obtain that

τ ′(t) = −1 + s(t)s′′(t)

s′(t)2
.

Given that s′(t) is bounded away from zero in the interval of
interest, τ ′(t) can be unbounded below only if the same is true
of s′′(t); that is, there exists an unbounded force pushing the
agents together. This contradicts our assumption that the other
forces in the system are bounded, because the TTC force is
always repulsive.
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