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Abstract—We address the problem of uncertainty-aware local
collision avoidance within the context of time-to-collision based
navigation of multiple agents. We consider two specific models
that account for uncertainty in the future trajectories of inter-
acting agents: an isotropic model which conservatively considers
all possible errors, and an adversarial model that assumes the
error is towards a head-on collision. We compare the two
models experimentally via a number of simulation scenarios, and
also provide theoretical guarantees about the collision avoidance
behavior of the agents.

I. INTRODUCTION

Local collision avoidance plays an important role in multi-
agent navigation and planning. Whether there are Roombas
cleaning the floor, autonomous vehicles driving in a crowded
city center, or animated characters walking through a virtual
world, the agents should be able to sense their surroundings
and react accordingly in order to avoid collisions while suc-
cessfully completing their tasks. As such, numerous models
for local collision avoidance have been proposed in robotics,
traffic engineering, and computer animation.

Many well-known collision avoidance models rely on the
concept of velocity obstacles (VO) introduced by Fiorini and
Shiller for planar, disc-shaped agents [9]. The VO is the set
of all relative velocities between two agents that can lead to a
potential collision in the future, assuming that the agents are
moving at constant linear velocity. Hence, agents can safely
navigate by selecting new velocities that are outside of any
VOs induced by their neighbors. The VO provides a tractable
alternative to the notion of inevitable collision states, which is
inherently expensive to compute for most real world problems
[10, 5]. Since the work of Fiorini and Shiller [9], many exten-
sions of velocity obstacles have been proposed that account for
reciprocity among the agents, non-linear motion, controllers,
kinematically constrained robots, rectangular-shaped agents,
and group formations [31, 11, 35, 33, 12, 17, 22].

Much of the appeal of VO-based approaches is due to
the ORCA framework proposed by van den Berg et al. [32].
ORCA provides an efficient way for computing a collision-free
velocity outside the union of all VOs by conservatively approx-
imating each VO as a half-plane and using linear programming
to quickly find a feasible solution. As ORCA can also provide
formal guarantees about the collision-free behavior of the
agents, it has become very popular and many variants have
been proposed based on modified VO formulations, including

approaches for non-holonomic and car-like robots [2, 3], as
well as elliptical agents [8] to name just a few.

Overall, velocity-based approaches provide an intuitive
framework to reason about collision avoidance, and different
models have been introduced to account for uncertainty in
the sensing data allowing implementation on physical robots.
The PVO [11] method, for example, considers uncertainty in
the movement and sensing of the robots but does not assume
reciprocity among the interacting robots. The HRVO [27]
formulation addresses this issue, whereas the approach in [15]
extends ORCA to bound the error introduced by localization.

However, despite their stability and applicability to robots,
VO-based and ORCA-like approaches are very conservative
in nature. In an attempt to guarantee collision-free behavior,
the agents tend to throw away too many admissible velocities
exhibiting inefficient behavior. In many interaction scenarios,
for example, the agents end up stop moving, focusing on not
colliding and forgetting about their tasks in hand. In contrast,
force-based models can allow more flexibility in the behavior
of the agents (see, e.g., Fig. 2).

Force-based models traditionally resolve collisions by using
repulsive artificial potential fields [4, 20], or a mixture of
distance-based physical and social forces [14, 24]. In all these
models, though, the agents are prone to collisions and unre-
alistic behaviors such as oscillatory and backwards motions,
since they only react when they get too close to each other and
do not account for the velocities of their neighbors. To address
these issues, predictive force-based models have been recently
introduced, in which two agents only experience an interaction
force if they are approaching each other. The resulting force
is typically based on the time that it takes for the agents to
collide [25, 26], or the time at which the distance between the
interacting agents becomes minimal [37].

A representative predictive force-based model is the time-
to-collision (TTC) approach proposed recently by Karamouzas
et al. [18]. The authors analyzed a large corpus of crowd data,
including interactions of pedestrians in commercial streets
and college campuses, as well as motion capture experiments
where participants had to navigate through dense and narrow
bottlenecks. Their analysis showed that, independent of the
task in hand, the interaction force between two pedestrians
follows an inverse power-law relationship as a function of their
estimated time to collision. The resulting TTC model allows
agents to emulate better how humans resolve collisions in real
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life, leading to more efficient behavior as compared to VO-
based approaches. Another benefit that we show here is that
unlike other previously mentioned force-based approaches, the
TTC model can guarantee collision-free navigation in generic
scenarios. This property has never been established in previous
work, and we provide a proof in Sec. IV.

However, despite providing better flexibility in the velocities
that the agents can adopt, the TTC model, as well as other
predictive force-based approaches, assume that the agents
are equipped with perfect sensors. In the real world, such
an assumption is unrealistic since there is typically some
noise when a robot senses the positions and velocities of its
neighbors. Similarly, in interactive virtual environments, some
uncertainty exists when the user is interacting with AI agents
(e.g., a user-controlled avatar walking amidst NPCs).

The problem of motion planning under sensing and motion
uncertainty can be generically modeled as a partially observ-
able Markov decision process (POMDP) [1], where a control
policy needs to be computed over the space of belief states.
POMDPs lead to optimal solutions, but their computational
complexity increases exponentially with the dimensions of the
state space. To address this issue, approximate models have
also been proposed that have a polynomial running time in
the state space, such as approaches that locally optimize an
input feasible trajectory assuming Gaussian beliefs [30, 34].
However, such approaches are still intractable to the problem
of navigating multiple agents in real time without collisions.

As such, in this paper, we focus on local multi-agent naviga-
tion and generalize the TTC model to account for uncertainty
in the future trajectories of interacting agents. Our aim is to
maintain the structure and simplicity of the TTC model, while
extending its collision-free guarantees to the uncertain case.
Overall, this paper makes the following contributions:
• We extend the time-to-collision approach for local navi-

gation to incorporate a model of uncertainty in the sensed
positions and velocities of other agents. We call this
approach uncertainty-TTC, or UTTC for short.

• We present two uncertainty models for collision avoid-
ance in the presence of bounded sensing error: an
isotropic model (UTTC-I) which conservatively considers
error in all possible directions, and an adversarial model
(UTTC-A) where the error is assumed to be directly
towards a head-on collision.

• We provide a theoretical proof of collision-free navigation
of multiple agents under both the TTC and UTTC-I
models in the absence of sensing error.

• We experimentally demonstrate collision-free behavior of
both UTTC-I and UTTC-A in a number of simulation
scenarios, including with nonzero sensing error.

II. BACKGROUND

Here, we provide a brief overview of the TTC model along
with the necessary equations needed in the following section
to extend this model by incorporating uncertainty. We refer
the reader to Karamouzas et al. [18] and the supplementary
material for more details.

A. Time-to-Collision Avoidance Model

Consider two agents or robots, Ai and Aj , which have
current positions xi and xj , and current velocities vi and
vj , respectively. For simplicity we assume that the physical
workspace of Ai and Aj is in R2, and the agents can be
modeled as discs of radii ri and rj , respectively, moving on
the 2D plane. The interaction between them depends only on
their relative displacement xij = xi−xj , their relative velocity
vij = vi−vj , and their combined radii rij = ri+rj . To avoid
notational clutter, we will drop the subscripts ij and write x,
v, and r for xij , vij , and rij respectively.

Given the current positions and velocities of the agents, we
predict collisions by assuming a linear extrapolation of their
trajectories. The agents’ predicted relative position at any time
t ≥ 0 is therefore x+vt. Their expected time to collision τ is
the earliest time at which the predicted positions are colliding,

τ = τ(x,v, r) = min {t : t ≥ 0, ‖x + vt‖ ≤ r}. (1)

If the set of colliding times is empty, we take τ =∞.
In the TTC model, the collision avoidance behavior of the

two agents follows a power-law relationship with respect to
the time to collision τ . In particular, we define an interaction
energy U = U(x,v, r) as a function of τ alone,

U = f(τ) = kτ−me−τ/τ0 , (2)

where m denotes the exponent of the power law, τ0 is the
truncation point of the energy (similar to the notion of time
horizon), and k is a scaling constant. The interaction energy
U is nonnegative and decreasing with increasing τ . It is zero
when the agents are not on a collision course (τ = ∞), and
rises to infinity as a collision becomes imminent (τ → 0). The
agents Ai and Aj avoid the collision by following the negative
gradient of the interaction energy with respect to xi and xj
respectively. That is, agent Ai experiences a repulsive force
f ij that pushes it towards a lower potential configuration,

f ij = − ∂U
∂xi

= −f ′(τ)
∂τ

∂xi
, (3)

and similarly agent Aj experiences a force f ji = −∂U/∂xj .
To compute f ij and f ji, we note the following facts:

1) The derivative of the power law is

f ′(τ) = −ke
−τ/τ0

τm+1

(
m+

τ

τ0

)
. (4)

2) As τ depends only on x = xi − xj , we have

∂τ

∂xi
=
∂τ

∂x
= − ∂τ

∂xj
. (5)

This also implies that the forces f ij and f ji are equal
and opposite.

3) The time to collision can be computed explicitly as the
smallest positive root of ‖x + vτ‖2 = r2, which is a
quadratic equation in τ . As the leading coefficient is



independent of x, the derivative of τ with respect to x
can therefore be shown to be

∂τ

∂x
=

x + vτ√
D

, (6)

where D = (x·v)2−‖v‖2(‖x‖2−r2) is the discriminant
of the quadratic.

Therefore, we have

f ij =
ke−τ/τ0

τm+1

(
m+

τ

τ0

)(
x + vτ√

D

)
, (7)

f ji = −f ij . (8)

We refer to the force defined in Equation (7) as the TTC
repulsion force fTTC(x,v, r). The magnitude of this force is
inversely proportional to the (m + 1)th power of the time to
collision τ , and its direction is along the relative displacement
of the two agents at the moment of impact.

B. Time to Collision and Velocity Obstacles

The TTC model is closely related to the concept of velocity
obstacles (VO), i.e., the set of all relative velocities between
two agents that will lead to a collision at some moment in
time. The VO can be geometrically interpreted as a cone with
its apex at the origin in the velocity space, and its legs tangent
to the disc centered at xj − xi having radius r. In the TTC
model, the interaction energy U is nonzero if and only if the
agents’ relative velocity v lies inside the VO.

Figure 1 shows the gradient of the τ -based repulsive po-
tential for a simple 2-agent scenario, and compares it to the
instantaneous change in relative velocity that a typical VO-
based model assumes for the same scenario. As can be seen,
the VO approach forbids any relative velocities inside the cone,
forcing the agents to choose a new relative velocity on the
boundary of the VO to avert a collision. On the other hand, in
TTC, the gradient guides the agent either to the left or right
of the VO, or slows it down depending on the position of the
relative velocity inside the VO.

In state-of-the-art VO-based approaches such as ORCA,
a collision between two agents is typically resolved by
projecting the relative velocity to the closest point on the
VO boundary. Furthermore, in an attempt to guarantee fast
computations of collision-free velocities, ORCA approximates
each VO with a line and uses linear programming to find
an optimal new velocity on the boundary of the convex hull
formed by the intersection of all lines. However, due to such
a conservative approximation, the set of feasible velocities of
an agent becomes significantly restricted, compromising the
agent’s goal-directed behavior. In contrast, the TTC model
allows much more flexibility in the velocities that the agents
can adopt, leading to more human-like avoidance behavior.

As an example, consider Fig. 2 where two agents going
from left to right have to interact with another agent coming
from the opposite direction. ORCA forces the single agent
to wait until the other two agents have walked around it. In
contrast, in the TTC model, the acceleration of the agents
gradually increases with decreasing τ values; the standalone

xi

xj

(a) (b) (c)

Fig. 1: (a) Two agents i and j and the associated velocity
obstacle (light gray). Any relative velocity vij lying in the VO
will lead to a collision in the future. (b) Change in velocity
as a function of vij in a VO model. (c) Interaction forces as
a function of vij in the TTC model.

ORCA

TTC

t = 3s t = 6s t = 9s

Fig. 2: Comparison between ORCA and the TTC model in a
small scenario involving three agents. At each discrete time,
the traces of the agents are shown as colored disks which are
light at their initial positions and dark at their current positions.

agent is willing to “take a step” towards a collision, assuming
that such a step will help the agent solve the collision more
efficiently in the near future.

C. Multi-Agent Navigation

The TTC formulation can be used for independent naviga-
tion of multiple holonomic agents A1, A2, . . . , An sharing a
common 2D workspace as follows. Each agent Ai indepen-
dently performs a continuous cycle of sensing and acting with
time step ∆t. A global planning routine computes a preferred
velocity vpref

i that will lead the agent towards its goal; in this
work, we assume a simple vpref

i that is directed towards Ai’s
goal with a magnitude equal to its preferred speed. This is
translated into a goal force f goal

i = kg(v
pref
i −vi) which adapts

the agent’s current velocity to the preferred one. The agent also
senses the position, velocity, and radius of each nearby agent
Aj , and computes an avoidance force f ij as defined in (7).
The new velocity and position of the agent is then obtained
through numerical integration using the total force, and the
sensing-acting cycle repeats.

III. ADDING UNCERTAINTY

The TTC model assumes that robots have perfect sensors
and are able to sense other nearby agents’ positions and veloc-
ities exactly. In the real world, though, such an assumption is
unrealistic, and other agents’ positions and velocities can only
be measured with some amount of error. If a small sensing



error changes the predicted trajectories from colliding to non-
colliding, the TTC force will be zero and the agents will not be
able to avoid the collision. Thus, if one wished to apply TTC-
style collision avoidance to robots in practice, the TTC model
in its current form would not be adequate. In this section, we
remove this drawback by extending the TTC model to account
for sensor uncertainty.

For agent Ai to compute its avoidance force with respect
to another agent Aj , it needs to observe the other agent’s
position and velocity. Let us denote by x̂ and v̂ the relative
displacement and velocity, respectively, between Ai and the
sensed position and velocity of Aj . We assume that the sensor
error is bounded by known constants,

‖x̂− x‖ ≤ δ, (9)
‖v̂ − v‖ ≤ ε. (10)

(δ and ε need not be the same for different pairs of agents.)
Thus, given x̂ and v̂, the true relative displacement x could be
any point in the ball B(x̂, δ) centered at x̂ with radius δ, and
similarly v ∈ B(v̂, ε). Our goal is to modify the TTC forces
to avoid any possible collision within these bounds.

Accounting for the position uncertainty is straightforward.
The initial conditions (x,v) lead to a collision if at some
time t ≥ 0 we have ‖x+vt‖ ≤ ri+ rj . Applying the triangle
inequality, this implies that ‖x̂ + vt‖ ≤ ri + rj + δ, that is,
the trajectories starting from the sensed relative position x̂
collide under a larger combined radius ri + rj + δ. Thus, if
we assume that x = x̂ and r = ri+ rj + δ, in effect enlarging
the radius of the other agent by δ, we are certain to avoid
collisions even if the true relative position differs from x̂ by
up to δ. From here on, we assume that the position uncertainty
has been accounted for in this way, and restrict attention only
to the velocity uncertainty ε. Note that enlarging the radius
alone is not sufficient to prevent collisions in the presence of
velocity uncertainty: v̂ may be outside the VO cone even if
the agents are about to collide, in which case the TTC force
will be zero.

We propose two different generalizations of the TTC model
to account for error in the sensed velocities. Our isotropic
model considers collisions with all possible velocities v within
the bounds of sensor error, and defines the interaction energy
based on a conservative time to collision τ̂iso. Our adversarial
model is derived from a simplifying assumption that the true
velocity differs from the sensed velocity by an error directly
in the direction of −x, as though chosen by an adversary
seeking to drive the agents directly towards each other. The
isotropic model is easier to analyze theoretically, and we
provide theoretical guarantees of collision avoidance. On the
other hand, the adversarial model performs equally well at
preventing collisions in practice, and we observe that it tends
to choose more efficient paths.

A. The isotropic model

In the isotropic model, we choose the estimated time to
collision τ̂iso to be the time of the earliest collision among all

possible values of v,

τ̂iso = min
ṽ∈B(v̂,ε)

τ(x, ṽ, r). (11)

Equivalently, we seek the earliest time t ≥ 0 at which there
exists some possible velocity ṽ ∈ B(v̂, ε) for which the
predicted positions are colliding. The set of predicted relative
positions forms a ball,

{x + ṽt : ṽ ∈ B(v̂, ε)} = B(x + v̂t, εt) (12)

which has a nonempty intersection with the set of colliding
relative positions B(0, r) if and only if ‖x + v̂t‖ ≤ r + εt.
Therefore, the time to collision under isotropic uncertainty can
again be found as the smallest positive root of a quadratic
equation in τ̂iso,

‖x + v̂τ̂iso‖2 = (r + ετ̂iso)2. (13)

Finally, we have

∂τ̂iso
∂x

=
x + v̂τ̂iso√

D
(14)

where the discriminant is

D = (x · v̂ − rε)2 − (‖v̂‖2 − ε2)(‖x‖2 − r2). (15)

We denote the associated interaction energy of the isotropic
model by Uiso = f(τ̂iso), and define the repulsion force

f iso(x, v̂, r) = −f ′(τ̂iso)
∂τ̂iso
∂x

(16)

as before.

B. The adversarial model

We motivate the adversarial model by considering the
behavior of the isotropic model in the limit as the agents
approach a collision. In this case, a first-order expansion of
Equation (13) about ‖x‖ → r gives

τ̂iso ≈
‖x‖ − r

x
‖x‖ · (v̂ − ε

x
‖x‖ )

. (17)

For the TTC model ‖x + vτ‖2 = r2, the corresponding
approximation is

τ ≈ ‖x‖ − rx
‖x‖ · v

. (18)

Comparing the two, we see that when the agents are close
together, the isotropic model behaves like the TTC model
applied to a modified velocity v̂ − ε x

‖x‖ .
The adversarial model arises by adopting this simple ap-

proximation for all x and v̂, not just the ones that are close
to a collision. That is, we define the repulsive force in the
adversarial model as

fadv(x, v̂, r) = fTTC (x, ṽ, r) , (19)

where ṽ = v̂ − ε x
‖x‖ .

We have also considered defining an interaction po-
tential Uadv = f(τ(x, ṽ, r)) and deriving the force
fadv = −∂Uadv/∂x, analogous to the isotropic model. This



Fig. 3: Comparison of the support sets of the TTC, UTTC-I
and UTTC-A energies. The uncertainty-aware models enlarge
the set of relative velocities which are affected.

model is not identical to using fTTC(x, ṽ, r) because it
involves an additional term proportional to ∂ṽ/∂x, but it
behaves very similarly in practice. Indeed, both formulations
lead to nonzero forces on the same set of inputs, namely those
in which the velocity ṽ leads to a collision. As the model
using fTTC(x, ṽ, r) is much simpler to implement, we use it
in the following, and discuss the Uadv variant further in the
supplementary material.

C. Relationship with velocity obstacles

It is instructive to consider how our two uncertainty models
affect the set of relative velocities v̂ which yield a nonzero
force f ij . Equivalently, these are the velocities for which
a potential collision is predicted. For the TTC model, let
us denote this set STTC = {v̂ : fTTC(x, v̂, r) 6= 0}; as
described in Section II-B, this set is precisely the VO cone.
Both the isotropic and the adversarial model enlarge this set,
but in slightly different ways. The isotropic model predicts a
potential collision for v̂ if there exists a colliding velocity ṽ
within ε of v̂. Thus Siso is the Minkowski sum of STTC with
a disc B(0, ε). This is exactly analogous to the uncertainty
model used in HRVO [27], which accounts for uncertainty in
the sensed velocity of another agent by taking the Minkowski
sum of the corresponding reciprocal velocity obstacle with a
disc of radius ε.

On the other hand, in the adversarial model, we only
check whether a collision exists with the modified velocity
ṽ = v̂ − ε x

‖x‖ . Therefore, Sadv is the translation of STTC by
ε x
‖x‖ . As STTC is a cone that contains the vector − x

‖x‖ , we
have STTC ⊂ Sadv, that is, the support of the adversarial
model contains that of the standard TTC model. In fact,
because ε x

‖x‖ ∈ B(0, ε), we further have the containment
STTC ⊂ Sadv ⊂ Siso. This relationship is shown in Figure 3.

IV. ANALYSIS

In this section, we first prove the collision-free guarantee
for the TTC model in the absence of uncertainty, which has
not been proved before. We then extend the proof to provide
collision-free guarantees in the isotropic model with nonzero
uncertainty.

A. Collision-free guarantees without sensor error

Our proof takes the form of an energy dissipation argument.
We show, first, that the TTC interaction forces are dissipative,
i.e. they do not increase the total energy of the system over
time; and second, that for a collision to occur, the system
must attain arbitrarily large amounts of energy. Therefore, as
long as the system starts in a state of finite energy and all the
other forces acting on it are either conservative or dissipative,
it cannot undergo a collision.

In this section, we collect the positions and velocities of the
n agents into the vectors q, q̇ ∈ R2n, respectively. The system
evolves under the influence of generalized forces f1, f2, . . . ∈
R2n according to the second-order ODE

q̈ =
∑
j

f j . (20)

The total kinetic energy of the system is T = 1
2‖q̇‖

2, and the
rate of work done on the system by a force f j is Ẇj = f j · q̇.
The evolution equation implies that Ṫ =

∑
j Ẇj .

We assume that the forces f j acting on the system are of
two types: conservative forces, and dissipative forces. A force
f j is conservative if there exists a potential function Uj(q)
such that f j = −∂Uj/∂q. In this case, the work done by
the force is always equal to the decrease in the associated
potential, Ẇj = −U̇j . A force f j is dissipative if it always
performs negative work, Ẇj = f j · q̇ ≤ 0. We can define the
total energy of the system as E = T + U , where U is the
sum of the potentials of all conservative forces. It is readily
shown that when all the forces are conservative or dissipative,
the total energy is a nonincreasing function of time.

Lemma 1. The TTC force f ij defined by (7) is dissipative,
and performs work at the rate Ẇ = f ′(τ).

Proof: First, we compute the quantity ∂τ/∂xij . Recall
that τ is the smallest positive root of a function of the form
φ(xij +vijt), namely φ(x) = ‖x‖2−r2ij . Performing implicit
differentiation with respect to xij , we have

∂φ

∂xij
+
∂φ

∂τ

∂τ

∂xij
= 0, (21)

i.e.
∇φ+ (∇φ · vij)

∂τ

∂xij
= 0. (22)

Therefore, ∂τ/∂xij = −(∇φ · vij)−1∇φ, which immediately
implies that

Ẇ = −f ′(τ)
∂τ

∂xij
· vij = f ′(τ). (23)

Note that f is a decreasing function, and so the work done by
the TTC force is always negative.

Lemma 2. The force f isoij in the isotropic model is dissipative
when (xij + vij τ̂iso) · vij ≤ 0.

Proof: We follow the same argument as above, except that
τ̂iso is a root of φiso(xij + vijt, t) with φiso(x, t) = ‖x‖2 −



(r+εt)2. Denoting ∂φiso/∂x and ∂φiso/∂t by ∇φiso and φ′iso
respectively, implicit differentiation now yields

∂τ̂iso
∂xij

=
−∇φ

∇φ · vij + φ′
(24)

=
−(xij + vij τ̂iso)

(xij + vij τ̂iso) · vij − (r + ετ̂iso)ε
. (25)

When (xij + vij τ̂iso) · vij ≤ 0, this quantity is negative, and
consequently the rate of work done by the force,

Ẇ = f ′(τ̂iso)
(xij + vij τ̂iso) · vij

(xij + vij τ̂iso) · vij − (r + ετ̂iso)ε
(26)

is negative too.
So far we have considered the forces at a single instant in

time. To analyze the possibility of collisions, we now consider
the trajectories of agents as a function of time. Let us restrict
attention to two agents in the system, Ai and Aj , and consider
their separation s(t) = ‖xij(t)‖ − rij . In the TTC model it
is common for agents to graze tangentially past each other
without colliding; at the moment of tangency the separation
s(t) falls to zero but does not cross it, and we have s′(t) = 0.
As we do not wish to forbid such trajectories, in this section we
only consider a collision to occur when s(t) reaches zero with
a nonzero time derivative, s′(t) < 0. The following lemma
shows that in arriving at such a state requires an unbounded
amount of energy.

Lemma 3. If two agents collide at a time t∗, and all forces
other than the TTC force f ij are bounded, there exists an
interval [t0, t

∗] in which the TTC force between the agents
performs an unbounded amount of negative work.

We refer the reader to the supplementary material for the
proof as it is more involved than the others. Lemma 3 implies
that in the generic case, when one pair of agents approaches
each other but all other pairs have a finite separation, a
collision cannot occur. However, we cannot yet rule out
simultaneous collisions where multiple pairs of agents collide
at the same time t∗, for example when an agent gets squeezed
between other agents approaching from different directions at
the same time. In such cases, multiple interaction forces would
become unbounded. We leave the analysis of such situations
for future work.

Theorem 1. In a multi-agent system that begins with finite
energy and evolves under the influence of (i) conservative
forces with nonnegative potentials, and (ii) dissipative forces,
there cannot be a time instant where exactly one pair of agents
is colliding.

Proof: The total energy of the system is nonincreasing
and nonnegative. If two agents were to approach a collision at
time t∗ with no other collisions in a neighborhood of t∗, there
would exist a time interval [t0, t

∗] within that neighborhood
in which all other forces were bounded, and in which the
TTC force removes an unbounded amount of energy from
the system. Therefore, E(t0) is finite and E(t∗) → −∞,

Fig. 4: (left to right) The 3-agent, 8-agent, crossing, and
hallway scenarios used to evaluate our proposed uncertainty
models. The depicted simulations were obtained using the
UTTC-I model.

which is impossible by the assumption that the potentials are
nonnegative.

A similar argument may be made for the isotropic model in
the absence of sensor error, except for two modifications. First,
the isotropic force is not always dissipative, so the argument
of nonincreasing energy cannot immediately be employed.
However, as it is dissipative for agents that are approaching
each other, the argument still holds in the pre-collision interval
[t0, t

∗]. Second, the expression for the rate of work done by the
force is more complicated. As s→ 0, τ → 0, we approximate
(xij+vij τ̂iso)·vij ≈ xij ·vij ≈ rṡ and find that the integrated
work done is

W =

∫
f ′(τ̂iso(t))

rṡ

rṡ− rε
dt. (27)

Because our assumption is that ṡ is bounded away from zero
as τ̂iso → 0, so is the fraction in the integrand, and the integral
remains infinite.

B. Collision-free motion with sensor error

The isotropic model guarantees that if two agents were to
approach a collision in finite time, we would have τ̂ → 0
even in the presence of bounded sensor error. This is because
τ̂ is defined by taking the minimum time to collision over
all relative velocities in B(v̂, ε), and by the bounded error
assumption we know that the true velocity v is in this set. This
property is encouraging because it means the repulsion force
would rise to infinity at least as rapidly as in the error-free
case, suggesting that the same collision avoidance guarantees
should apply. However, the interaction forces are no longer
reciprocal (f ij 6= f ji), because the error in v̂ij may not
equal the error in v̂ji. This complicates the energy dissipation
argument, and we do not yet have full theoretical guarantees
of the absence of collisions. Nevertheless, the results of our
simulation experiments are consistent with the encouraging
theoretical properties mentioned above, and indicate that that
both the isotropic and adversarial models prevent all collisions
even with nonzero sensing error.

V. EVALUATION

We have evaluated the performance of our method via
simulation experiments on four navigation benchmarks, shown



in Fig. 4. These include:
• 3-agents: A group of two agents interacts with a single

agent.
• 8-agents: Eight agents are placed along the circumference

of a disc and have to walk to their antipodal positions.
• Hallway: Two groups of 75 agents each cross paths in

a hallway while coming from opposite directions. The
width of the hallway can accommodate 7 to 10 agents
abreast.

• Crossing: Four groups of 30 agents each enter from four
perpendicular directions and cross each other.

The simulation parameters used in our experiments are the
same as in Karamouzas et al. [18], except the time step ∆t =
5 ms.

We model sensing error as follows. At each time t, the
sensed relative velocity v̂ij(t) for a pair of interacting agents
is randomly perturbed from the true velocity vij(t) via

v̂ij(t) = vij(t) + ηij(t), (28)

where ηij is a random process R→ R2. In our experiments,
we have considered a number of different models for the
distribution and temporal behavior of ηij(t).

For simplicity, we assume that at any time t, the errors
ηij(t) for different pairs of agents i, j are independent. For
the temporal behavior of the error, we consider two cases:

1) White noise: For a given pair of agents i, j, the errors
at different time instants ηij(t1) and ηij(t2) are inde-
pendent and identically distributed.

2) Systematic error: For a given pair of agents i, j, the error
is constant over time, ηij(t) = ηij(0).

Finally, for the distribution of the error ηij(t) over R2, we
consider two classes of distributions, parametrized by noise
magnitude ν:

1) The uniform distribution on a disc centered at 0 with
radius ν, which we denote D(0, ν); this satisfies our
assumption that the error is bounded by ε if ν ≤ ε.

2) The bivariate normal distributionN (0, 14ν
2I), which has

the same mean and covariance as D(0, ν).
The combination of error distribution and temporal model

give rise to four error models. For each error model and
each navigation scenario, we ran N = 100 simulations with
different random seeds. For each run, we checked whether any
collisions between two agents occurred over the course of the
simulation, and computed the mean travel time over all agents.

A. Results

a) Collision-free behavior: To experimentally verify the
collision-free guarantees of our models, we ran 100 simu-
lations for the 8-agents scenario for each interaction model
(TTC, UTTC-I, UTTC-A) and error model. We counted the
number of runs in which collisions occurred and plotted
the empirical probability of collision as a function of error
magnitude ν. For white noise, we observed no collisions in
all cases, even for the TTC model; this is not surprising as
the effect of randomly time-varying error is likely to cancel

(a) disc distribution error (b) normal distribution error

Fig. 5: Fraction of runs that result in collisions as a function of
sensor error. The dashed line denotes the uncertainty bound.
Both UTTC-I and UTTC-A are collision-free as long as the
noise does not exceed the uncertainty bound.

out over time. For systematic error, the results are shown in
Figure 5.

As can be seen in the plots, the standard TTC model cannot
prevent collisions for even a small amount of error. Our models
guarantee collision-free interactions as long as the sensing
errors of agents do not exceed the velocity uncertainty in the
model. However, if the errors increase past the uncertainty
bound, the assumptions of the model are violated and col-
lisions may begin to occur. Interestingly, while the normal
distribution is unbounded and therefore never satisfies our
bounded error assumption, our method is still able to prevent
most collisions as long as the magnitude of the error is not
too large. This suggests that our approach may be useful
in practice even when the error does not follow a bounded
distribution.

b) Effect on motion efficiency: The addition of uncer-
tainty in our model causes agents to move more cautiously
and maintain a greater separation from each other. Therefore,
one may expect that the collective navigation behavior may
become less time efficient than in the standard TTC model.
To quantify this effect, we ran simulations comparing the mean
travel time over all agents under the TTC model with the mean
travel time under UTTC-I and UTTC-A with ε = 0.2. In the
UTTC cases, we tested two settings of error magnitude, ν = 0
and ν = 0.2. This gives five different conditions for each of
the four scenarios. We ran each condition 100 times and report
the mean and standard deviation of the mean travel time in
Table I.

The results illustrate that adding uncertainty causes only a
modest increase in travel time. The TTC model is equivalent
to UTTC with ε = 0, so the error-free case (ν = 0) quantifies
the effect of uncertainty alone on the collective motion of
the agents. It can be seen that the mean travel time under the
UTTC-I model is almost always larger than that under UTTC-
A, which is in turn larger than that under TTC. This difference
increases in congested scenarios such as the hallway, and under
large uncertainty UTTC may fail to generate self-organized
phenomena such as lane formation, which allow interactions
to be solved efficiently at a macroscopic level. This is likely
related to the fact that UTTC agents are more conservative and



TTC UTTC-I UTTC-A

ν = 0 ν = 0.2 ν = 0 ν = 0.2

3-agents 13.04 13.13 13.30± 0.26 13.03 13.25 ± 0.36
8-agents 14.81±0.31 15.07 ± 0.42 14.49 ± 0.74 15.35 ± 0.56 14.10 ± 0.59
hallway 56.17 67.23 70.98± 8.08 58.97 63.06 ± 3.30
crossing 55.83 58.17 59.04± 0.51 55.85 57.08 ± 0.39

TABLE I: Mean travel time for all scenarios and interactions models. Reported numbers are the averages over 100 simulation
runs. UTTC-I and UTTC-A use an uncertainty of ε = 0.2. For the 8-agent scenario, we perturbed the initial and goal positions
of all agents randomly to break the symmetry, thus we have a nonzero standard deviation even for the ν = 0 cases.

respond to a larger range of potentially colliding velocities
(STTC ⊂ Sadv ⊂ Siso), as shown in Section III-C), leading
them to keep a greater distance from each other. Mean travel
times increase further in the presence of nonzero error (ν =
0.2), but in this case the TTC model cannot prevent collisions.
The difference between the mean travel times of UTTC-I and
UTTC-A continues to hold.

c) Computational cost: We measured the performance
of TTC and the UTTC models with our single-threaded
implementation running on a 3.5GHz Intel Xeon processor.
The computational cost depends on the number of agents in
the scenario, but all our examples ran in real time. Similar to
TTC, UTTC takes O(k) time to compute a new velocity for
an agent at a given time step, where k denotes the number
of neighbors that are inside the sensing range of the agent. In
scenarios where the crowd density remains constant, UTTC
runs asymptotically in O(n) time per simulation cycle for
n agents. In the hallway scenario, for example, UTTC took
between 1.67 ms/frame (for UTTC-A) to 1.96 ms/frame (for
UUTC-I) to compute new velocities for the agents, an increase
of only 11% and 36% over TTC respectively.

VI. DISCUSSION

Our paper builds on prior work on time-to-collision based
local navigation of multiple agents. We have focused on the
problem of collision avoidance while accounting for uncer-
tainty in the sensor data of the agents. Two specific sensor error
models were introduced, an isotropic model which conserva-
tively considers all possible errors, and an adversarial model
that assumes the error is towards a head-on collision. We
have provided theoretical guarantees on the collision avoidance
behavior of the agents and demonstrated the applicability of
both of our models via simulations. In the future, we would
like to test the applicability of our models on physical robots
in real environments, as well as run simulation and real-word
comparisons with existing VO-based uncertainty models.

Our method relies on the assumption that the sensor error is
bounded by known constants. In practice, these error bounds
could be estimated a priori using a calibration procedure [29].
The uncertainty could also be estimated on the fly using
methods such as LTA [23] and BRVO [21] which estimate the
motion of other agents from noisy data, using a pre-trained
pedestrian model or ensemble Kalman filtering respectively.
These methods are thus complementary to our work.

Our work has a number of limitations that we would like
to address in the future. Firstly, we have provided theoretical
guarantees only for TTC and UTTC-I in the error-free case.
In the future, we would like to provide a more thorough
analysis establishing similar guarantees in all cases. Second,
neither the TTC model nor our UTTC models respect kinody-
namics and differential constraints. As system dynamics can
significantly affect the complexity of multi-agent navigation
problems [6, 16], we would like to extend our formulations
to account for different kinematic systems. Such an extension
will allow us to generalize our uncertainty-aware interaction
models to a wide range of agents (the approach of [28], for
example, can be adapted to enable UTTC on differential-drive
agents). Third, to guarantee numerical stability, a very small
time step ∆t must be chosen during each sensing-acting cycle.
In recent work [19], we have shown that collision-free motion
can be guaranteed with arbitrary time steps in the context of
crowd simulation, albeit using a centralized solver. It would
be interesting to see if such techniques can be adapted to robot
navigation.

As shown in our experiments, incorporating uncertainty
in the TTC formulation leads to agents that exhibit more
conservative behavior than vanilla TTC agents. For example,
a pair of agents approaching each other in a hallway will keep
some extra distance between them due to the uncertainty in
sensing each other’s velocities. In future work, we would like
to quantify this effect and further investigate the properties of
UTTC-A, which appears to be less conservative than UTTC-I
in all of our simulations.

Another limitation of this and other VO-based work, is that
collisions are detected by linearly extrapolating the agents’
trajectories based on their current velocities. In the future,
we would like to extend our time-to-collision formulation to
account for nonlinear motion. The recent work in [36] that uses
the notion of continuous collision probabilities can provide
some interesting ideas in this direction. Finally, we note that
due to the decentralized nature of each agent’s decision, our
UTTC models cannot provide any formal guarantees about the
global behavior of the agents. Some local approaches have
been proposed focusing on the adaptation of the goal velocity
to alleviate congestion and deadlock situations [7, 13], which
would be interesting to combine with our method. The work
in [21] is also highly relevant as it can allow us to infer goal
velocities from captured real crowd data.
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